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EXPERIENCE WITH A MULTIPROCESSOR BASED ON
EIGHT FPS 120B ARRAY PROCESSORS

Ingrid Y. Bucher, Paul O. Fredrickson, and
James W. Moore

Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

The rate of increase in the speed of monoprocessors
is no longer keeping pace with the needs of our
laboratory; accordingly we are investigating the use
of parallel processors in large scientific computa-
tions. As an initial experiment, a particle-in-cell
plasma simulation was adapted to run on a star graph
architecture consisting of a UNIVAC 1110 as hub, and
up to eight Floating Point Systems AP120B array pro-
cessors at the other vertices. Subdivision of tasks
among processors and measured results are discussed.

——. —

INTRODUCTION

A variety of scientific problems at our laboratory could make
use of a hundredfold increase in computer power over th~ next
decade 11]. However, it seems unlikely that the new mono-
processors we will see during this time period will be more than
10 times as fast as the fastest available today; thus we expect
that the needs of the large-scale users will be met only by
machines with true parallel processing capabilities. Current
technology Interprocessor communication, by means of either
direct line or common memory, is a significant factor to be
considered in the design of an algorithm to fit on a parallel
architecture. Thus our guiding philosophy has been to divide
the problem into relatively lar e tasks with a high degree of
independence and, ftherefore, re atively little interprocessor
communication. To avoid common memor contention, we are

ilooking at architectures in which eac proces::rt::te uipped
with a reasonable amount of private memory. 7 ramework
we wish to consider the usefulness of a variety of
interconnection schemes.



THE PIC ALGORITHM

Our initial experiment involved a particle-in-cell (PIC) simula-
tion of a plasma [2], which was particularly interesting to
study because it exemplifies a class of algorithms that does not
effectively utilize the vector capabilities of our fastest
computers. In this algorithm the distribution function in
position-velocity space that describes the current state of the
plasma is represented by several thousand particles. During
each timestep the particles are allowed to move through a fine
grid approximation to the electromagnetic field. In the
simulation we considered, the magnetic field was purely external
but the electrostatic field that influenced the motion of the
particles was partly caused by the charge carried by the
particles themselves,

Accordingly, at the end of every timestep the charge of the
particles is computed for each cell of the grid and at the
beginning of the next timestep Poisson’s equation is solved,
giving a potential from which the field can be calculated.
These steps are illustrated in Fig. la and again in Fig. lb, the
second figure indicating a natural way of dividing the task
among p+l processors. It is clear that the only communication
is between processor p , which computes the potential from the
charge, and the other B processors in which the particles are
moved. Thus the algcrithm, as we have dissected it, fits rather
naturally on any multiprocessor with a star-graph
interconnection scheme.

PROGRAMMINGTHE ARRAY PROCESSOR

Almost all of the computational effort in the algorithm uccurs
in the relatively small loop in which one particle after another
is moved through the field. This is because of the large number
of parti~:les that are needed in the simulation to provide a
smooth approximation to the distribution function of the plasma.
Thus it seemed sensible to spend considerable effort on
programming th~s loop in order to make it as fast as possible.
For this reason we chose to code the loop in APAL, rather than
FORTRAN.

Our first step was to express the entire loop in terms of basic
120B operations, without deciding exactly when these operations
were to be performed. We needed 37 multiplies, 63 floating
point adder operations, and 48 references to main data memory.

The next step was to construct a dependency graph of the loop,
with one operation at each ncde. Fig, 2 shows the last few
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Fig, la. The time step loop of
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Fig. 2. The last few nodes of the dependency graph

of the particle push block of Fig, lb.
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nodes of .Iegraph, in which the charge of one particle is
distributed to four cell vertices by piecewise linear
interpolation.

The third step in the process was to stretch and adjust the
graph to fit into as few cycles as we could, with each line of
code containing at most one operation on each functional unit.
It was at this stage that we inserted pushes where needed in
the graph. In the fourth stage we assigned registers in the x,
y and s pads to the temporary variables that were represented
earlier by stretched lines in the dependency graph. This
required careful bookkeeping, for we had no registers to spare
in any of the pads. The small section of APAL code in Fig. 3
corresponds to the section of dependency graph in Fig. 2.

The final stage was to use APSIM to find all the errors we
should not have made earlier, but did. In the end wc were able
to fit the loop into 106 machir.e cycles, for a computational
rate of 5.7 megaflops.

EXPERIMENTAL RESULTS

The Naval Ocean Systems Center in San Diego has nine AP120B
array processors attached to a UNIVAC 1110, which is an example
of the interconnection scheme that our algorithm requires. The
UNIVAC was used as host processor P , in which Poisson’s

9equation was solved, and the partic e-push vertices were
assigned to as many of the APs as could be made available to
us,
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Fig. 3. Reduction to APAL code of the dependency graph
segment shown in Fig, 2,
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Fig. 4 shows the timing results from a typical run, in which
32,400 particles in 6 array processors are being pushed through
a 1.6by 16 grid. The computation rate was 34.2 megaflops while
all 6 APs were running, as contrasted with about a fifth of a
megaflop in the host. We could have achieved a significant
speedup by passing the potential calculation to one of the FPS
boxes, where the solution would have been computed using a fast
fourier transform.

We observed an overhead of between 5 and 13 milliseconds per
system call for communication with the array processors or
initiation of data transfers. The effect of this overhead is
clearly visible in Fig. 4 as a staggering of the start times
for the APs, as well as the rather large amount of time
required for data communication between host and array
processors.

4s part of the experiment we rewrote the part of the algorithm
destined for the array processors in FORTRAN and compiled that
into APAL code, The compiler produced a main loop that
required almost 500 cycles to complete. This is about five
times as many as the hand-coded version, an efficiency that is
not uncommon for the first version of a compiler.

loop tlmc 540~ P
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Fig. 4. Timing measurements made on a typical run with the
multiprocessor version of the PIC algorithm.
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CONCLUSIONS

The results of our ex~eriment lead us to conclude that parallel
processing, using the sort of loosely coupled multiprocessor
described above, can lead to a significant speedup of certain
large scientific problems and particle-in-cell simulations in
particular. Our experiment also shows that fast data transfer
between processors, or fast access to memory common to
processors, is an important design goal of a parallel processor
system. In particular, the operating system overhead in
interprocessor communication’ must be minimized.
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